宽屏壁纸网
宽屏壁纸网宽屏壁纸网提供大量生活知识问答,包括植物、动物、生活、汽车、科技、人文、地址知识等相关问答学习交流.
版权申明:
本站部分内容源自互联网,如涉及版权等问题,请作者及时联系本站,我们会尽快处理。
宽屏壁纸网
Copyright @ 2015-2022 宽屏壁纸网-专注于生活学习
james7902 网友
该名网友总共回答了20个问题,此问答他的回答如下:采纳率:90%
塞瓦定理 在△ABC内任取一点O, 直线AO、BO、CO分别交对边于D、E、F,则 (BD/DC)*(CE/EA)*(AF/FB)=1 证法简介 (Ⅰ)本题可利用梅涅劳斯定理证明: ∵△ADC被直线BOE所截, ∴ (CB/BD)*(DO/OA)*(AE/EC)=1 ① 而由△ABD被直线COF所截,∴ (BC/CD)*(DO/OA)*(AF/FB)=1② ②÷①:即得:(BD/DC)*(CE/EA)*(AF/FB)=1 (Ⅱ)也可以利用面积关系证明 ∵BD/DC=S△ABD/S△ACD=S△BOD/S△COD=(S△ABD-S△BOD)/(S△ACD-S△COD)=S△AOB/S△AOC ③ 同理 CE/EA=S△BOC/ S△AOB ④ AF/FB=S△AOC/S△BOC ⑤ ③×④×⑤得BD/DC*CE/EA*AF/FB=1 利用塞瓦定理证明三角形三条高线必交于一点: 设三边AB、BC、AC的垂足分别为D、E、F, 根据塞瓦定理逆定理,因为(AD:DB)*(BE:EC)*(CF:FA)=[(CD*cotA)/[(CD*cotB)]*[(AE*cotB)/(AE*cotC)]*[(BF*cotC)/[(BF*cotA)]=1,所以三条高CD、AE、BF交于一点. 可用塞瓦定理证明的其他定理; 三角形三条中线交于一点(重心):如图5 D ,E分别为BC ,AC 中点 所以BD=DC AE=EC 所以BD/DC=1 CE/EA=1 且因为AF=BF 所以 AF/FB必等于1 ,所以三角形三条中线交于一点,即为重心 用塞瓦定理还可以证明三条角平分线交于一点 此外,可用定比分点来定义塞瓦定理: 在△ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,又分比是λ=BL/LC、μ=CM/MA、ν=AN/NB.于是AL、BM、CN三线交于一点的充要条件是λμν=1.(注意与梅涅劳斯定理相区分,那里是λμν=-1)1年前他留下的回答
8以上就是小编为大家介绍的求证塞瓦定理 的全部内容,如果大家还对相关的内容感兴趣,请持续关注宽屏壁纸网!
详情:已知a=2005x+2004,b=2005x+2005,c=......
详情:线粒体增大膜面积的方式是? ......
详情:急pick up造句急,求给个答案. ......
详情:凛字组什么词?2字的 ......
本站部分内容源自互联网,如涉及版权等问题,请作者及时联系本站,我们会尽快处理。
宽屏壁纸网